整数线性编程(ILP)提供了一种可行的机制,可以用自然语言编码有关可解释的多跳推断的明确和可控制的假设。但是,ILP公式是不可差异的,不能集成到更广泛的深度学习体系结构中。最近,Thayaparan等人。 (2021a)提出了一种新的方法,将ILP与变压器整合在一起,以实现复杂多跳推断的端到端的可不同性。尽管已证明该混合动力框架可以提供更好的答案和解释选择,而不是基于变压器和现有的ILP求解器,但神经符号的整合仍然依赖于ILP配方的凸松弛,这可以产生亚最佳溶液。为了改善这些局限性,我们提出了DIFF-BOMP解释器,这是一种基于可区分的黑框组合求解器(DBCS)的新型神经符号结构(Pogan \ V {C} I \'C等,2019)。与现有的可区分求解器不同,提出的模型不需要对明确的语义约束的转换和放松,从而可以直接,更有效地整合ILP公式。 DIFF-COMBLEXER证明了与非差异性求解器,变压器和现有的基于可区分约束的多跳推理框架相比的准确性和解释性的提高。
translated by 谷歌翻译
已经提出了需要树木,以模拟在开放域的文本问题答案的背景下进行解释产生的人类推理过程。但是,实际上,手动构建这些解释树是一个艰苦的过程,需要积极的人类参与。鉴于捕获从问题到答案的推理线的复杂性,或者从索赔中捕获了前提,因此出现了如何帮助用户有效地构建多个级别的树木,并给定大量可用事实。在本文中,我们将需要树的构造作为一系列主动的前提选择步骤,即,对于说明树中的每个中间节点,专家需要注释大型候选人列表中的前提事实的正面和负面示例。然后,我们迭代地进行精细 - 训练前训练的变压器模型,并产生了正面和紧密控制的负面样本,并旨在平衡语义关系和解释性的关系关系的编码。实验评估证实了拟议的主动精细研究方法的可测量效率提高,以促进累积树的构建:与几种替代方案相比,解释性前提选择的提高了20 \%。
translated by 谷歌翻译
在本文中,我们提供了针对深度学习(DL)模型的结构化文献分析,该模型用于支持癌症生物学的推论,并特别强调了多词分析。这项工作着重于现有模型如何通过先验知识,生物学合理性和解释性,生物医学领域的基本特性来解决更好的对话。我们讨论了DL模型的最新进化拱门沿整合先前的生物关系和网络知识的方向,以支持更好的概括(例如途径或蛋白质 - 蛋白质相互作用网络)和解释性。这代表了向模型的基本功能转变,该模型可以整合机械和统计推断方面。我们讨论了在此类模型中整合域先验知识的代表性方法。该论文还为解释性和解释性的当代方法提供了关键的看法。该分析指向编码先验知识和改善解释性之间的融合方向。
translated by 谷歌翻译
专门的基于变形金刚的模型(例如生物Biobert和Biomegatron)适用于基于公共可用的生物医学语料库的生物医学领域。因此,它们有可能编码大规模的生物学知识。我们研究了这些模型中生物学知识的编码和表示,及其支持癌症精度医学推断的潜在实用性 - 即,对基因组改变的临床意义的解释。我们比较不同变压器基线的性能;我们使用探测来确定针对不同实体的编码的一致性;我们使用聚类方法来比较和对比基因,变异,药物和疾病的嵌入的内部特性。我们表明,这些模型确实确实编码了生物学知识,尽管其中一些模型在针对特定任务的微调中丢失了。最后,我们分析了模型在数据集中的偏见和失衡方面的行为。
translated by 谷歌翻译
已经提出了在科学域中再生自然语言解释作为评估复杂的多跳和可解释的推理的基准。在这种情况下,当使用作为跨编码器架构并进行微调的解释时,大型语言模型可以实现最先进的性能。然而,虽然对解释的质量很多,但有效地研究了推理的问题在很大程度上。事实上,交叉编码器本质上不是可扩展的,对需要推断的大规模事实库的实际情况具有有限的适用性。为了在规模上实现复杂的多跳推理,本文重点介绍了双编码器架构,调查了密集和稀疏模型交叉口的科学解释再生问题。具体地,我们呈现瘢痕(用于可扩展的自回归推断),一种混合​​框架,其迭代地结合了基于变压器的双编码器,其具有稀疏模型的解释性模型,旨在利用说明中的显式推理模式。我们的实验表明,混合框架显着优于先前的稀疏模型,实现了与最先进的交叉编码器相当的性能,同时大约为数百万个事实的Corpora的速度快50倍和可扩展。进一步分析了语义漂移和多跳问题的回答,揭示了所提出的杂交提高了最具挑战性解释的质量,有助于提高下游推理任务的性能。
translated by 谷歌翻译
本文介绍了DIFF解释器,这是可解释的多跳推断的第一个混合框架,该框架通过可区分的凸优化将明确的约束与神经体系结构集成在一起。具体而言,DIFF解释器允许在受限的优化框架内微调神经表示,以回答和解释自然语言的多跳问题。为了证明混合框架的功效,我们将现有的基于ILP的求解器与基于变压器的表示相结合。对科学和常识性质量检查任务的广泛经验评估表明,在端到端可区分框架中明确约束的整合可以显着改善非不同可差异ILP求解器的性能(8.91%-13.3%)。此外,其他分析表明,与独立的变压器和以前的多跳方法相比,DIFF解释器能够实现强大的性能,同时仍提供结构化解释以支持其预测。
translated by 谷歌翻译
讨论的现有账户强调了事先经验在解决新问题方面的作用。然而,大多数用于多跳文本推理的当代模型构建解释,考虑每个测试用例的隔离。众所周知,这种范式遭受语义漂移,这导致伪装解释的构建导致错误的结论。相比之下,我们研究了解释的多跳推断的绑架框架,该框架采用了在基于案例的推理中主要研究的检索重新使用修正范例。具体地,我们通过检索和调整来自类似训练示例的先前自然语言解释,提出了一种地址和解释了不均义推理问题的新颖框架。我们在下游致辞和科学推理任务上统一地评估了基于案例的绑架框架。我们的实验表明,与现有可说明的方法相比,所提出的框架可以有效地与稀疏和密集的预训练编码机制或下游变压器集成。此外,我们研究了检索重新使用 - 修改范例对可解释性和语义漂移的影响,表明它提高了构造解释的质量,从而提高了下游推理性能。
translated by 谷歌翻译
Stress has a great effect on people's lives that can not be understated. While it can be good, since it helps humans to adapt to new and different situations, it can also be harmful when not dealt with properly, leading to chronic stress. The objective of this paper is developing a stress monitoring solution, that can be used in real life, while being able to tackle this challenge in a positive way. The SMILE data set was provided to team Anxolotl, and all it was needed was to develop a robust model. We developed a supervised learning model for classification in Python, presenting the final result of 64.1% in accuracy and a f1-score of 54.96%. The resulting solution stood the robustness test, presenting low variation between runs, which was a major point for it's possible integration in the Anxolotl app in the future.
translated by 谷歌翻译
We describe a Physics-Informed Neural Network (PINN) that simulates the flow induced by the astronomical tide in a synthetic port channel, with dimensions based on the Santos - S\~ao Vicente - Bertioga Estuarine System. PINN models aim to combine the knowledge of physical systems and data-driven machine learning models. This is done by training a neural network to minimize the residuals of the governing equations in sample points. In this work, our flow is governed by the Navier-Stokes equations with some approximations. There are two main novelties in this paper. First, we design our model to assume that the flow is periodic in time, which is not feasible in conventional simulation methods. Second, we evaluate the benefit of resampling the function evaluation points during training, which has a near zero computational cost and has been verified to improve the final model, especially for small batch sizes. Finally, we discuss some limitations of the approximations used in the Navier-Stokes equations regarding the modeling of turbulence and how it interacts with PINNs.
translated by 谷歌翻译
Recently, extensive studies on photonic reinforcement learning to accelerate the process of calculation by exploiting the physical nature of light have been conducted. Previous studies utilized quantum interference of photons to achieve collective decision-making without choice conflicts when solving the competitive multi-armed bandit problem, a fundamental example of reinforcement learning. However, the bandit problem deals with a static environment where the agent's action does not influence the reward probabilities. This study aims to extend the conventional approach to a more general multi-agent reinforcement learning targeting the grid world problem. Unlike the conventional approach, the proposed scheme deals with a dynamic environment where the reward changes because of agents' actions. A successful photonic reinforcement learning scheme requires both a photonic system that contributes to the quality of learning and a suitable algorithm. This study proposes a novel learning algorithm, discontinuous bandit Q-learning, in view of a potential photonic implementation. Here, state-action pairs in the environment are regarded as slot machines in the context of the bandit problem and an updated amount of Q-value is regarded as the reward of the bandit problem. We perform numerical simulations to validate the effectiveness of the bandit algorithm. In addition, we propose a multi-agent architecture in which agents are indirectly connected through quantum interference of light and quantum principles ensure the conflict-free property of state-action pair selections among agents. We demonstrate that multi-agent reinforcement learning can be accelerated owing to conflict avoidance among multiple agents.
translated by 谷歌翻译